Psyc 60: Intro to Statistics
Prof. Judith Fan
Spring 2022

Today

Lecture 19: Generalizing what you have learned

General announcements

What is correlation \& how does it relate to causation?

How to extend your model to multiple predictors?

All Remaining Due Dates

Assignment

SONA credits
CourseKata modules
Quiz 5
Milestone 5: Final project report
CAPEs
Final project poster
Final project showcase
Project peer reviews (during showcase)
Project team evaluations (after showcase)
Lab 5

Deadline

Wednesday, 6/1 at 4PM
Friday 6/3 at 11:59PM
Friday $6 / 3$ at 5PM
Friday 6/3 at 11:59PM
Saturday 6/4 at 8AM
Monday, 6/6 at 12PM (NOON)
Tuesday, 6/7 at 8AM-10:50AM
Tuesday, 6/7 at 8AM-10:50AM
Tuesday, 6/7 at 11:59PM
Wednesday, 6/8 at 11:59PM

Please stay tuned for INFORMATION ABOUT THE PROJECT SHOWCASE over Slack \& Canvas!

Every time someone fills

 out a CAPE, AN ACTUAL
UNICORN DOES A LITTLE DANCE.

CAPE

General Questions

Overall Progress

1/3

Your reason for taking this class is

Major Minor Gen.Ed. Elective Interest

What grade do you expect in this class?

```
A B
```

I learned a great deal from this course.

Today

Lecture 19: Generalizing what you have learned

General
announcements

What is correlation \& how does it relate to causation?

How to extend your model to multiple predictors?

What is correlation \& how does it relate to causation?

What does the word "correlation" mean to you?

2
 What is correlation \& how does it relate to causation?

Pearson's correlation coefficient

Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Pearson's correlation coefficient

$$
\begin{aligned}
& \text { How to "z-score" your data: } \\
& Z(X)=\frac{X-\mu}{\sigma}
\end{aligned}
$$

z-scored height (in.)

What is correlation \& how does it relate to causation?

Pearson's correlation coefficient

Compare these two scatter plots. How are they similar? How are they different?

Calculating Pearson's correlation coefficient

> Variance for a single variable

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{N-1}
$$

- Covariance between two variables:

$$
\text { covariance }=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1}
$$

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

- Pearson's correlation coefficient (r) scales the covariance so that it has a standard scale (ranging between -1 and +1).

$$
\begin{aligned}
& \text { covariance }=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{N-1} \\
& r=\frac{\text { covariance }}{s_{x} s_{y}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(N-1) s_{x} s_{y}}
\end{aligned}
$$

- Pearson's correlation coefficient (r) measures the covariance between z-scored data (since the std deviation of z -scored data is 1)

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Calculating Pearson's correlation coefficient

What is correlation \& how does it relate to causation?

Pearson's correlation coefficient

Which pair of variables is more strongly correlated?

What is correlation \& how does it relate to causation?

Pearson's correlation coefficient

"Correlation between thumb and pinkie is stronger than correlation between thumb and height."

What is correlation \& how does it relate to causation?

How is Pearson's correlation coefficient related to the slope of a linear regression model?

$$
\beta_{1}=r(Y, X) * \frac{s_{Y}}{s_{X}}
$$

> Both slope of regression line and Pearson's r tell you something about the strength of a linear relationship between two variables.
> But they give you different kinds of information:
> Pearson's r gives you information that is independent of the units used to measure both variables. Tells you how close the relationship is to a perfect linear relationship.
> The slope of regression line tells you estimated change in value of outcome variable (Y) for each unit of change in predictor variable (X). Useful for making precise predictions.
> Slope and Pearson's r are equal when sd of Y and X are equal.

Pearson's correlation coefficient

A

B

Which of these unstandardized scatterplots shows a stronger correlation between the two variables?

What is correlation \& how does it relate to causation?

Remember to visualize your data!

X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
Y SD : 26.93
Corr. : -0.06

Summary statistics are identical in all 13 graphs.

X	Mean:	54.26
Y Mean:	47.83	
$X S D:$	16.76	
$Y S D:$	26.93	
Corr. $:$	-0.06	

Summary statistics are identical in all 13 graphs.

Mean:	54.26
Y Mean:	47.83
X SD	16.76
Y SD	26.93
Corr.	-0.06

$$
\begin{array}{ll}
\dot{y} & \dot{3} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots
\end{array}
$$

Don't be fooled: visualize your data!

What is correlation \& how does it relate to causation?

Correlation and causation

https://xkcd.com/552/

What is correlation \& how does it relate to causation?

Correlation and causation

- So many of you might be familiar with the mantra: "correlation doesn't imply causation."
- It's a useful reminder because as human beings, we are extremely good at detecting patterns and finding meaning in the patterns we see.

Correlation and causation

Global Temperature Is. Number of Pirates

https://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming/ http://www.tylervigen.com/spurious-correlations

What is correlation \& how does it relate to causation?

Correlation and causation

- So many of you might be familiar with the mantra: "correlation doesn't imply causation."
- It's a useful reminder because as human beings, we are extremely good at detecting patterns and finding meaning in the patterns we see.
> How should we think about the relationship between correlation and causation? Oftentimes observational data is the only kind available.
"Correlation does not imply causation, but it's a pretty good hint."
-Edward Tufte

What is correlation \& how does it relate to causation?

Understanding causation using causal graphs

A causal graph describes the latent causal relations that give rise to the variables that we measure

Causal relations mean that manipulating one variable will change another

Increasing study time will increase knowledge, which increases grades and reduces exam
finishing time
arrows reflect
causal relations

What is correlation \& how does it relate to causation?

Correlation and causation

Correlations may reflect causal relations or the effects of common causes

What is correlation \& how does it relate to causation?

Correlation and causation

- Correlations can sometimes imply the wrong causal relation
> Negative correlation between exam grades and exam finishing time
> Might be interpreted to mean that finishing the exam faster will improve grades!
> So if we only measured exam grades \& finish times in this study, we might fool ourselves!

(positive/negative)

What is correlation \& how does it relate to causation?

Natural experiments

> Ideally, if we want to be able to draw stronger inferences about causal relationships between variables, we would run a randomized controlled experiment.

- But this isn't always possible! (e.g., randomly assigning smoking habits to individuals and tracking them over a long time)
> Instead, a still-powerful alternative is a natural experiment.
> A natural experiment is an empirical study in which individuals (or clusters of individuals) are exposed to the experimental and control conditions that are determined by nature or by other factors outside the control of the investigators.

What is correlation \& how does it relate to causation?

Example: Natural experiment exposing relationship between smoking and heart disease

> InHelena, Montana a smoking ban was in effect in all public spaces, including bars and restaurants, during the six-month period from June 2002 to December 2002.
> Helena is geographically isolated and served by only one hospital. The investigators observed that the rate of heart attacks dropped by 40% while the smoking ban was in effect.

- Opponents of the law prevailed in getting the enforcement of the law suspended after six months, after which the rate of heart attacks went back up.
> This study was an example of a natural experiment, called a case-crossover experiment, where the exposure is removed for a time and then returned.
> However, the inability to control variables in natural experiments can impede investigators from drawing firm conclusions. Critics argued that the particularly large percentage fluctuation in the rate of myocardial infarction was likely due to chance, given the small population size.

Today

Lecture 19: Generalizing what you have learned

General
announcements

What is correlation \& how does it relate to causation?

How to extend your model to multiple predictors?

How to extend your model to multiple predictors?

data $=$ model + error

what we actually observe
what we expect to observe
difference between expected and observed

How to extend your model to multiple predictors?

What is the General Linear Model (GLM)?

A general linear model is a specific type of statistical model in which the values of a dependent/outcome variable is determined by a linear combination of independent predictor variables that are each multiplied by a weight (often represented by the letter \boldsymbol{b} or Greek letter "beta," β).

$$
=b_{0}+b_{1} X_{i}+
$$

observed value
of outcome variable
e.g., thumb length
Y_{i}

intercept
\qquad

slope
value of
predictor
variable
e.g., height
\hat{Y}_{i} predicted value of outcome variable
Y_{i} observed value of outcome variable

3 How to extend your model to multiple predictors?
Example: making predictions using a linear model

$$
Y_{i}=b_{0}+\underset{b_{1}}{b_{1}} X_{i}+e_{i}
$$

Suppose:

- Your estimate of b0 (the y-intercept) $=-3$.
- Your estimate of b1 (the slope) $=2.5$.

What happens to Y if you increase X by 4?

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

Two questions we might want to ask:
> Decide: Is there a relationship between study time and grade?
> Predict: Given a certain amount of study time, what grade would we predict?

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

${ }^{100}{ }^{-}$r(studyTime, grade) $=0.634$
$\mathrm{t}=2.01$
$\mathrm{p}\left(\mathrm{tdff}_{\mathrm{f}}=5 \geq 2.01\right)=0.09$ 。
lm(grade~studyTime,
data=df)
Coefficients:
(Intercept) studyTime
76.156
1.438

Two questions we might want to ask:
> Decide: Is there a relationship between study time and grade?
> Predict: Given a certain amount of study time, what grade would we predict?

$$
\text { grade }=\hat{\beta}_{1} * \text { studyTime }+\hat{\beta}_{0}
$$

Example: Are exam grade and study time related?

> Suppose that some students took a prior course on the topic

- Those students have substantially higher grades in the course, given the same amount of study time
- We can generate a more complex model that includes both of these factors

$$
\text { grade }=\hat{\beta_{1}} * \text { studyTime }+\hat{\beta_{2}} * \text { priorClass }+\hat{\beta_{0}}
$$

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

> Suppose that some students took a prior course on the topic

- Those students have substantially higher grades in the course, given the same amount of study time
- We can generate a more complex model that includes both of these factors
grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$
slope

How to extend your linear model to multiple predictors?
Example: Are exam grade and study time related?
Model 0: Null model (intercept only)
grade $=\hat{\beta}_{0}$
Model 1: Simple linear regression (1 predictor)
grade $=\hat{\beta}_{1} *$ studyTime $+\hat{\beta}_{0}$

Model 2: Multiple linear regression (2 predictors)
grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta}_{2} *$ priorClass $+\hat{\beta_{0}}$

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

Call:

lm(formula $=$ grade \sim studyTime + priorClass, data $=$ df)
Residuals:
1
2
3
4
5
6
8

$$
\begin{array}{lllllll}
3.58333 & 0.75000 & -3.58333 & -0.08333 & 0.75000 & -6.41667 & 2.08333
\end{array}
$$

2.91667

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

(Intercept) 70.0833 3.7680 18.600 8.27e-06 ***

studyTime	1.6667	0.4553	3.661	0.0146	*
priorClass	9.1667	2.8793	3.184	0.0244	*

Signif. codes: 0 ،***' 0.001 '**' 0.01 ‘*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.021 on 5 degrees of freedom Multiple R-squared: 0.8028, Adjusted R-squared: 0.724 F-statistic: 10.18 on 2 and 5 DF, p-value: 0.01726

How to extend your linear model to multiple predictors?
Example: Are exam grade and study time related?
$100-$ grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

100- grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

priorClass
0

- 1
studyTime

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

100- grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

priorClass
0

- 1
studyTime

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

$100-$ grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

priorClass
0

- 1
studyTime

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

$100-$ grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

priorClass
0

- 1
studyTime

How to extend your linear model to multiple predictors?

Example: Are exam grade and study time related?

$100-$ grade $=\hat{\beta_{1}} *$ studyTime $+\hat{\beta_{2}} *$ priorClass $+\hat{\beta_{0}}$

priorClass
0

- 1
studyTime

How to extend your linear model to multiple predictors?

What is a statistical interaction?

> Sometimes the effect of one predictor variable depends on another variable.
> For example, "How does the effect of caffeine on public speaking ability depend on baseline anxiety?"
> When that is the case, we say that these two variables "interact with each other" or that "there is an interaction between these two variables."

Example: How does the effect of caffeine on public speaking ability depend on baseline anxiety?

How to extend your linear model to multiple predictors?

Example: How does the effect of caffeine on public speaking ability depend on baseline anxiety?
lmResultCaffeine = lm(speaking~caffeine,data=df) summary(lmResultCaffeine)

Call:
lm(formula $=$ speaking \sim caffeine, data $=$ df)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-33.10	-16.02	5.01	16.45	26.98

Coefficients:

Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
-7.413	9.165	-0.81	0.43
$\mathbf{0 . 1 6 8}$	$\mathbf{0 . 1 5 1}$	$\mathbf{1 . 1 1}$	$\mathbf{0 . 2 8}$

How to extend your linear model to multiple predictors?

What is a statistical interaction?

> Sometimes the effect of one predictor variable depends on another variable.
> For example, "How does the effect of caffeine on public speaking ability depend on baseline anxiety?"

- By making non-anxious people better at speaking
> By making anxious people worse at speaking
> When that is the case, we say that these two variables "interact with each other" or that "there is an interaction between these two variables."

Example: How does the effect of caffeine on public speaking ability depend on baseline anxiety?

How to extend your linear model to multiple predictors?

Example: How does the effect of caffeine on public speaking ability depend on baseline anxiety?
lmResultCafAnx = lm(speaking ~ caffeine + anxiety,data=df) summary(lmResultCafAnx)

Call:
lm(formula $=$ speaking \sim caffeine + anxiety, data $=$ df)

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-32.97	-9.74	1.35	10.53	25.36

anxietynotAnxious
"main effects"

Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
-12.581	9.197	-1.37	0.19
0.131	0.145	0.91	0.38
14.233	8.232	1.73	0.10

How to extend your linear model to multiple predictors?

Example: How does the effect of caffeine on public speaking ability depend on baseline anxiety?

- An interaction occurs when the effect of one variable depends on the value of another variable
- To include an interaction between variables in a model, we multiply them in the formula:

$$
\begin{gathered}
\text { lm(formula }=\text { speaking } \sim \text { caffeine }+ \text { anxiety }+ \\
\text { caffeine * anxiety, data }=d f)
\end{gathered}
$$

How to extend your linear model to multiple predictors?

Call:
lm(formula $=$ speaking \sim caffeine + anxiety + caffeine * anxiety, data $=d f)$

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-11.385	-7.103	-0.444	6.171	13.458

Coefficients:

(Intercept)	17.4308	5.4301	3.21	$0.00546 * *$	
caffeine	-0.4742	0.0966	-4.91	0.00016	$* * *$
anxietynotAnxious	-43.4487	7.7914	-5.58	$4.2 e-05$	$* * *$
caffeine: anxietynotAnxious	1.0839	0.1293	8.38	$3.0 e-07 * * *$	

\uparrow

interaction term

how much does the effect of caffeine differ between anxious and non-anxious people?

How to extend your linear model to multiple predictors? $\hat{y}=\beta_{1} * \operatorname{caffeine}+\beta_{2} *$ anxiety $+\beta_{3} *($ caffeine $*$ anxiety $)+\beta_{0}$

Example: Are exam grade and study time related?
Model 0: Null model (intercept only)
publicSpeaking $=\hat{\beta}_{0}$
Model 1: Simple linear regression (1 predictor)
publicSpeaking $=\hat{\beta}_{0}+\hat{\beta}_{1} *$ caffeine

Model 2: Multiple linear regression (2 predictors)
publicSpeaking $=\hat{\beta}_{0}+\hat{\beta}_{1} *$ caffeine $+\hat{\beta}_{2} *$ anxiety
Model 3: Multiple linear regression (2 predictors w/ interaction term)

$$
\text { publicSpeaking }=\hat{\beta}_{0}+\hat{\beta}_{1} * \text { caffeine }+\hat{\beta}_{2} * \text { anxiety }+\hat{\beta}_{3} *(\text { caffeine } * \text { anxiety })
$$

Today

Lecture 19: Generalizing what you have learned

General announcements

What is correlation \& how does it relate to causation?

How to extend your model to multiple predictors?

Student Daily Feedback Survey.

doing

CourseKata Modules
(40% of your grade)
Final Project (28\% of your grade)

Labs (20\% of your grade)

Quizzes (10% of your grade)

SONA Study
Participation (2\% of your grade)

Grading
What We Expect
From Everyone
Student Background
Survey

Student Daily

Feedback Survey

Feedback

Acknowledgements

PSYC 60: How was class today?

```
Hi there!
I would love to know about your experience in today's class. Could you please take 2
minutes to answer the following few questions? It will be hugely useful for helping me know
what is working well, what isn't, and how to keep improving this class.
Best,
Prof. Fan
jefan@ucsd.edu Switch account
Your email will be recorded when you submit this form
* Required
```

How are you finding the pace of this class so far? *

1	2	3	4	5	6	7

Much too slow

Much too fast

Do you feel like you are learning new things? *

1	2	3	4	5	6	7

Not learning anything new

