

Psyc 60: Intro to Statistics

 Prof. Judith FanSpring 2022

Due This Week

Chapter 9 CourseKata modules are due today.
Note: If you finish modules a few days late, there may be a delay between finishing your CourseKata modules and the Gradebook in Canvas being updated
(b/c there are multiple steps involved to correct these). But don't worry, these will be updated!

Due This Week

Sampling distributions

Before:
Chapter 9
During: Lab
3C

Review
Session 2 Quiz 3;
Before: None Project
During: \quad Milestone 3 Due
Wrap-up Lab (Preregistration)
3

Released Thursday at 5PM \& due by 4:59PM on Friday

Due This Week

6
May
2

Sampling
distributions
Before:
Chapter 9
During: Lab
3C

Review
Session 2 Quiz 3;
Before: None Project
During: Milestone 3 Due
Wrap-up Lab (Preregistration)
3

Project Milestone 3 is
about getting practice articulating the research question for your final project \& thinking about different potential DGPs.

Today

Mini-Review Session \#2

Modeling data with the mean

Thinking about variability as model error

Estimating variability

What is a model? Why do we want one?

What is a model? Why do we want one?

What is a model? Why do we want one?

What is a model? Why do we want one?

What is a model? Why do we want one? Models simplify the world for us.

What is a model? Why do we want one? Models simplify the world for us.

Mississippi River Basin Model

Actual Mississippi River Basin

What is a model? Why do we want one?

Models simplify the world for us.

Mississippi River Basin Model

Model of Eukaryotic Cell

Actual Mississippi River Basin

Actual Image of Cell

. . . In that Empire, the Art of
Cartography attained such Perfection that the map of a single Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, and which coincided point for point with it.
-Jorge Luis Borges
(from On Exactitude In Science)

How to model data with a single number

Your predictions about the next random observation reveal your intuitions about the best value to model these distributions!

Best value will depend on the type of variable \& shape of distribution

For quantitative variables

- If roughly symmetric \& bell-shaped, a number right in the middle...
- If skewed, a number toward where the middle would be if you ignored the long tail

For categorical variables

- Generally best value is the category that is most frequent

1 How to model data with a single number

How to model data with a single number

How to model data with a single number

data $=$ model + error

area of
 area
 $=$ geometric + figures
 other stuff

How to model data with a single number

data $=$ model + error
what we actually observe
what we expect to observe
difference between expected and observed

How to model data with a single number

What is our best guess for random child in NHANES?

How to model data with a single number

What is our best guess for random child in NHANES?

What if we picked the most common value 75
... How well does that number describe the data?

How to model data with a single number

What is our best guess for random child in NHANES?

How to model data with a single number

How to calculate the sample mean:

The sum of the errors from the sample mean = zero.

How to model data with a single number

How to calculate the sample mean:

Note: "average" usually refers to the mean

The sum of the errors from the sample mean = zero.

How to model data with a single number

Calculating the sample mean:

"mu" is symbol
used to represent
the population mean

And the population mean:

sum of all observed values in population

number of observations
in the whole population
same formula, different symbols

How to model data with a single number

We can easily calculate the sample mean. We often want to infer the population mean.

And the population mean:

sum of all observed values in population
Calculating the sample mean: And the population mean:
same formula, different symbols

How to model data with a single number

The mean is the balancing point of the distribution.

How to model data with a single number

The mean is the balancing point of the distribution.

You can think of this blue dot as having some "deviation" from the mean. The deviation means its distance from the mean and isn't the same thing as "standard deviation" (more on that later)

How to model data with a single number

The sum of the errors from the sample mean = zero.
Try it out yourself!
d <- c(3,5,6,7,9)
mean(d)
[1] 6
errors=d-mean(d) print(errors)
[1] -3 -1 $0 \quad 1 \quad 3$
print(sum(errors))
[1] 0

x	error
3	-3
5	-1
6	0
7	1
9	3

sum $=0$

How to model data with a single number

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

$$
S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

How to model data with a single number

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

$$
S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

How to model data with a single number

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

How to model data with a single number

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

$$
\qquad S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x^{\prime}}\right)^{2}
$$

How to model data with a single number

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

$$
S S E=\sum^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

Sum of Squared Errors

$$
\text { model prediction }: \hat{x}=\operatorname{mean}(x)=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

How to model data with a single number

One not-so-useful feature of the mean:

people	income
Joe	48000
Karen	64000
Mark	58000
Andrea	72000
Pat	66000

w/o Beyoncé:
mean income: \$61,600

How to model data with a single number

One not-so-useful feature of the mean:

people	income
Joe	48000
Karen	64000
Mark	58000
Andrea	72000
Pat	66000

w/o Beyoncé:
mean income: \$61,600

people	income
Joe	48000
Karen	64000
Mark	58000
Andrea	72000
Beyonce	$54,000,000$

w/ Beyoncé:
mean income: \$10,848,400

How to model data with a single number

Introducing the median:

When the scores are ordered from smallest to largest, the median is the middle score

When there is an even number of scores, the median is the average between the middle two scores

How to model data with a single number

The median minimizes the sum of absolute errors:

$$
S A E=\sum_{i=1}^{n}\left|x_{i}-\hat{x}\right|
$$

The mean minimizes the sum of squared errors:

$$
S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

When might that difference matter?

How to model data with a single number

One not-so-useful feature of the mean:

people	income
Joe	48000
Karen	64000
Mark	58000
Andrea	72000
Pat	66000

people	income
Joe	48000
Karen	64000
Mark	58000
Andrea	72000
Beyonce	$54,000,000$

w/o Beyoncé:
mean income: \$61,600 median income: \$64,000
w/ Beyoncé:
mean income: $\$ 10,848,400$ median income: \$64,000

How to model data with a single number

So why would we ever use the mean instead of the median?
The mean is the "best" estimator
It bounces around less from sample to sample than any other estimator.

But the median is more robust to outliers.

Such tradeoffs are unavoidable in statistics.

Today

Mini-Review Session \#2

Modeling data with the mean

Thinking about variability as model error

Estimating variability

How to know how well a model fits

The mean is the "best" estimate because it minimizes the sum of squared errors (abbreviated SSE below)

$$
S S E=\sum^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

Sum of Squared Errors

$$
\text { model prediction }: \hat{x}=\operatorname{mean}(x)=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

How to know how well a model fits

$$
\operatorname{SSE}_{\text {Sum of Squared Errors }}^{n}=\sum_{i=1 \text { the "i-th" "xhat"i }}^{n}\left(x_{i}-\hat{x^{\prime}}\right)^{2}
$$

How to know how well a model fits

$$
\qquad S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x_{i}}\right)^{2}
$$

To obtain a measure of model error that does not depend on the number of observations, you can compute the Root Mean Squared Error, which you calculate by dividing SSE by the number of observations, then taking the square root:

How to know how well a model fits

$$
\text { Sum of Squared Errors } \underset{i=1}{\infty}\left(\boldsymbol{X}_{i}-\hat{\boldsymbol{X}}\right)^{2}
$$

To obtain a measure of model error that does not depend on the number of observations, you can compute the Root Mean Squared Error, which you calculate by dividing SSE by the number of observations, then taking the square root:

$$
R M S E=\sqrt{\frac{S S E}{n}}
$$

How to know how well a model fits

What is our best guess for random child in NHANES?

Using the mean minimizes the RMSE ($\& ~ S S E ~ \& ~ M S E)$
75. For this dataset, RMSE $=10.6$ in.

Can we do better?
$R M S E=\sqrt{\frac{S S E}{n}}$
height (inches)

How to know how well a model fits

What is our best guess for random child in NHANES?

What about their age? Let's plot height vs. age and see how they are related.

How to know how well a model fits

What is our best guess for random child in NHANES?

What about their age? Let's plot height vs. age and see how they are related.

Can we do better?

When we take age \& gender into account, RMSE $=3.22$ in.

40

How to know how well a model fits

What is our best guess for random child in NHANES?

2 How to know how well a model fits

What is our best guess for random child in NHANES?

How to know how well a model fits

data $=$ model + error
what we
actually
observe
what we
expect to
observe
difference between expected and observed

Error can come from two sources:
(1) The model is incorrect
(2) The measurements have random error ("noise")

How to know how well a model fits

Error can come from two sources:

- incorrect model
- noisy data

How to know how well a model fits

Error can come from two sources:

- incorrect model
- noisy data

How to know how well a model fits

How to know how well a model fits

What makes a model "good"?
Describes current dataset well: the error for the fitted data is low Generalizes to new data well: the error for new data is low
These two are often in conflict!

data $=$ model + error
what we
actually
observe
difference between expected and observed

How to know how well a model fits

Overfitting

- A more complex model will always fit the data better than a simpler model
- The model fits the

How to know how well a model fits

Overfitting

- A more complex model will always fit the data better than a simpler model
- The model fits the underlying signal as well as the random noise in the data
- But a simpler model often does a better job of explaining a new sample from the same population

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience."
-Albert Einstein

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience."
-Albert Einstein
Paraphrased as:
"Everything should be as
simple as it can be, but not any simpler."

Today

Mini-Review Session \#2

Modeling data with the mean

Thinking about
variability as
model error
Estimating variability

How do we estimate variability?

Sum of Squared Error (SSE) is a good measure of total variability if we are using the mean as a model. But, it does have one important disadvantage:

Which distribution looks more spread out?

How do we estimate variability?

Sum of Squared Error (SSE) is a good measure of total variability if we are using the mean as a model. But, it does have one important disadvantage:

Which distribution looks more spread out?

How do we estimate variability?

Sum of Squared Error (SSE) works fine when two distributions have the same sample size (i.e., number of observations).

$$
S S E=\sum_{i=1}^{n}\left(x_{i}-\hat{x}\right)^{2}
$$

But SSE is hard to interpret if sample sizes are different. This is b/c SSE always increases as sample size increases, even if the distribution isn't getting "more spread out."

Meet the sample variance (kind of like "SSE per data point"):

$$
\begin{gathered}
\text { sample } \\
\text { variance }
\end{gathered}=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}
$$

How do we estimate variability?

Meet the sample variance (kind of like "SSE per data point"):

$$
\begin{gathered}
\text { sample } \\
\text { variance }
\end{gathered}=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}
$$

Variance is a single number that summarizes how spread out a distribution is.
low variance

high variance

How do we estimate variability?

Variance is a single number that summarizes how spread out a distribution is.
sample variance (" s^{2} ")
Notice the symbols!

$$
\begin{aligned}
& \text { sample } \\
& \text { variance }
\end{aligned}=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}
$$

We divide by n-1 to get unbiased estimate of population variance from our sample. This is because there are $\mathbf{n - 1}$ degrees of freedom when computing sample variance: once we compute the mean, there are only n-1 degrees of freedom.

How do we estimate variability?

Variance is a single number that summarizes how spread out a distribution is.
sample variance

$$
\underset{\text { variance }}{\text { sample }}=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}
$$

population variance

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{N}
$$

Meet the standard deviation
$S D=\sqrt{\text { variance }}$
square root of the variance in the same units as the underlying measurement often abbreviated s.d. built-in R function is: "sd"

$$
\begin{aligned}
& \text { variance }=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1} \\
& S D=\sqrt{\text { variance }}
\end{aligned}
$$

x	error	error^2
3	-3	9
5	-1	1
6	0	0
7	1	1
9	3	9

Calculate the sample variance of x :

Calculate the sample s.d. of x :

How do we estimate variability?

$$
\begin{aligned}
& \text { variance }=\frac{S S E}{n-1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1} \\
& S D=\sqrt{\text { variance }}
\end{aligned}
$$

x	error	error^2
3	-3	9
5	-1	1
6	0	0
7	1	1
9	3	9

Calculate the sample variance of x : SSE= 20
variance ($\left.s^{2}\right)=20 / 4=5$
Calculate the sample s.d. of x :
SD=sqrt(5)=2. 24

Today

Mini-Review Session \#2

Modeling data with the mean

Thinking about variability as model error

Student Daily Feedback Survey.

doing

CourseKata Modules
(40% of your grade)
Final Project (28\% of your grade)

Labs (20\% of your grade)

Quizzes (10% of your grade)

SONA Study
Participation (2\% of your grade)

Grading
What We Expect
From Everyone
Student Background
Survey

Student Daily

Feedback Survey

Feedback

Acknowledgements

PSYC 60: How was class today?

```
Hi there!
I would love to know about your experience in today's class. Could you please take 2
minutes to answer the following few questions? It will be hugely useful for helping me know
what is working well, what isn't, and how to keep improving this class.
Best,
Prof. Fan
jefan@ucsd.edu Switch account
Your email will be recorded when you submit this form
* Required
```

How are you finding the pace of this class so far? *

1	2	3	4	5	6	7

Much too slow
Much too fast

Do you feel like you are learning new things? *
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Not learning anything new

